Collaboration Activities in the Geosciences Network (GEON)

Chaitan Baru
PI, GEON
Director, Science R&D
San Diego Supercomputer Center

Outline

- About GEON
- Collaboration "modes" in GEON
 - Barriers / incentives for collaboration
- The SDSC/Calit2 Synthesis Center
 - The SDSC Notebook project

About GEON

 National Science Foundation ITR Project, 2002-2007, \$11.6M

PI Institutions

- Arizona State University
- Bryn Mawr College
- Penn State University
- Rice University
- San Diego State University
- San Diego Supercomputer Center/UCSD
- University of Arizona
- University of Idaho
- University of Missouri, Columbia
- University of Texas at El Paso
- University of Utah
- Virginia Tech
- UNAVCO
- Digital Library for Earth System Education (DLESE)

Partners

- California Institute for Telecommunications and Information Technology, Cal-(IT)²
- Chronos
- CUAHSI-HIS
- ESRI
- Geological Survey of Canada (GSC)
- HP
- IBM
- IRIS
- Kansas Geological Survey
- Lawrence Livermore National Laboratory
- NASA Goddard, Earth System Division
- Southern California Earthquake Consortium (SCEC)
- U.S. Geological Survey (USGS)

Affiliated Project

EarthScope

Project Goals and Approach

- Develop cyberinfrastructure to support the "day-to-day" conduct of science (e-science), not just "hero" computations
 - Based on a Web/Grid services-based distributed environment
- Work closely with geoscientists to help create data sharing frameworks, best practices, and useful and usable capabilities and tools
- The "two-tier" approach
 - Use best practices, including commercial tools,
 - while developing advanced technology in open source, and doing CS research
- Leverage from other intersecting projects, e.g. BIRN, SEEK, OptlPuter

A Brief History of Collaboration in GEON

- Began with "Geoinformatics" workshops sponsored by NSF
 - First NSF Geoinformatics workshop, October 1999
 - Second workshop, April 2000
 - Only "domain" scientists. No involvement of IT researchers.
- NSF made the introductions between SDSC personnel and Geoinformatics organizers
- Third workshop, September 2000, was attended by SDSC
- Visit to SDSC by key Geoinformatics Pl's
 - Identified the key IT research issues: sophisticated data integration, distributed/grid computing, 4D and higher-order data visualization
- Project funded under NSF ITR program in 2002
 - ...collaborative science is underway
- Several collaborations are emerging with other geoscience and other sciences projects, international partners, and the EarthScope project in the US.

Large Projects and Collaboration

- At some level, all large projects are about collaboration.
 - Sounds self-evident, but we never really seem to plan from the beginning for this
- Collaboration for science versus collaboration to develop tools
 - Is collaboration an inherent problem when the "tool is the end goal"...
 - Rather than the science being the end goal?

The GEONgrid

The Need to Collaborate: Integration of multi-disciplinary data sets

Example:

What is the distribution and U/Pb zircon ages of A-type plutons in VA?

How about their 3-D geometry?

How does it relate to host rock structures?

Development of Shared Knowledge Structures

- Conceptual models of a domain or application, for purposes of communication, and/or system design
- Classification of ...
 - · concepts (taxonomy) and
 - data/object instances through classes
- Analysis of ontologies e.g.
 - Graph queries (reachability, path queries, ...)
 - Reasoning (concept subsumption, consistency checking, ...)
- Targets for semantic data registration
- Conceptual indexes and views for
 - searching,
 - browsing,
 - querying, and
 - integration of registered data

Creating and Sharing Concept Maps

Bill Glassley (LLNL), Randy Keller (UTEP), Bertram Ludaescher, Kai Lin, Dogan Seber (SDSC), et al

Community-Based Ontology Development

- Focused meetings
- Bring scientists together for 2+ days
- Include participation by Computer Science / Knowledge Base Management experts
- Create concept maps
- Refine
- Iterate
 - from napkin drawings, to concept maps, to ontologies
- Need better, online collaboration tools for this

Nexus of knowledge structures

Mark Gahegan, Bill Pike, Penn State

Searching and retrieving are a start; interpreting makes information useful

...implemented as a web portal

Concept maps: (Randy Keller's gravity map)

Concept maps... extend to data

...and to people, situations, methods

Collaboration "Modes"

Before:

 Collaborate on standards, etc. that will help bring science resources online, e.g. development of schema and ontology standards

During:

 Collaborate by jointly using online resources, and "doing the science", e.g. online analysis and mining of geologic databases, or other data sets

After:

 After doing a large computational run/experiment, or series of runs, collaborate to analyze the results, e.g. analysis of earthquake simulation runs

Challenges

- Moving from individual PI-oriented research to collaborative research (or from individual dept./agency to inter-agency)
 - How to deal with "re-purposing" of data and information?
- Incentives for sharing and cooperation
- The "Field of Dreams" "If you build it, they will come"
 - Will you build it so that they will come, or
 - Will they come, and then you will build it
- Also, need robust, stable, easy to use tools and environment

SDSC/Cal-(IT)² Synthesis Center

Vision

- To facilitate interactions and sharing ideas among scientists from multiple disciplines and sub-disciplines to solve multi-disciplinary and multi-scale science and engineering problems in a collaborative way
- To use cyberinfrastructure as a facilitator for the next generation of science

Joint activity at UC San Diego

 Between SDSC and California Institute for Telecommunications and Information Technology (Cal-(IT)²⁾

Synthesis Center

- Physical location where collaborators come together to run experiments and study experimental results using cyberinfrastructure tools
- Environment with ...
 - Large-scale, wall-sized displays
 - Links to on-demand cluster computer systems
 - Access to networks of databases and digital libraries
 - State-of-the art data analysis and mining tools
- Linked, "smart" conference rooms between SDSC and Cal-(IT)² buildings on UCSD campus

Synthesis Center

Using the Synthesis Center

Example: Multi-Megapixel Displays are Required for Seismic and Geosciences Monitoring

The SDSC Notebook

PI: Greg Quinn, Synthesis Center, SDSC

A desktop application to better enable the scientific researcher and knowledge worker utilize network information resources and manage data

Feature List

- Leverages features of Windows and the .Net development paradigm
- Local db with search functionality
- "Knowledge" of data types
- Ability to annotate stored data
- Peer-to-peer querying of stored data and annotations
- Data export capability to popular formats
- Unattended/automatic data updates via background use of web services & HTTP
- User notification of new data
- Plug-in API for data visualization components c/w basic data viewers for popular Bio-data types, e.g. text, protein sequences, molecules etc.
- Smart client framework for SOAP-based, data-intensive, web services
- Point-and-click interface to support new breed of Tablet PC's and ink data types

Acknowledgements

- Greg Quinn, PI and Team Lead
- Blair Jennings, Software Lead
- Bob Byrnes, Application Developer
- Mark Miller, Project Consultant
- Dan Fay & Microsoft Research

http://www.notebookproject.org

The SDSC Notebook

- Personal data repository
- Smart client for web services
- Advanced data presentation & annotation options
- Collaboration environment
- Scheduled automated data updating

Connected research environment

Web Interface SOAP Services

Web access to data

SOAP-based method calls to access and update search data

Report and paper preparation

::Notebook Project

Networked Data Source

Local XML data store sharable by P2P SOAP-based communication

Prototype design of the Notebook Application

Data sharing

::Notebook Project

Data Sharing & Sociological Issues/Compliance

- Data sharing initiatives have a high priority (e.g. with NIH)
- Likely in the PI's interest that there be complete data sharing amongst her/his researchers internally and limited data sharing with external collaborators
- But...
- In many labs, postdocs are highly competitive and are unlikely to want to share everything
- Data needs to be tagged to indicate whether it can be shared or is invisible to others within a research collaboration group.

Alpha/Beta Testing Program

- Identify suitable labs to partner with in software testing
- We will develop data viz components and advanced interfaces to data and analytical services to meet their needs
- We will provision new sources with SOAP-based data services where needed
- Garner feedback from labs, make appropriate changes to software, publish results and make software publicly available

iGEON – International Cooperation

- Approach: Need a geoscience and/or IT rationale for collaboration
- Canada
 - Host datasets via Web Mapping Service (WMS) Server at Geological Survey of Canada, Vancouver, BC
- China
 - Computational Geodynamics Lab will host a GEON cluster for iGEON in China.
 Will work on parallelization of codes.
- Australia
 - Link with their AEON effort (Earth and Ocean Network)
 - Work with Dietmar Mueller to help run mantle convection codes on Linux clusters and provide as a Web service in GEON
- Mexico
 - CICESE (Ensenada) will host data sets on server connected via high speed network.
- UK
 - e-Science Center will host a GEON node at Edinburgh

For Further Information

Contact: Chaitan Baru, <u>baru@sdsc.edu</u>

